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Abstract. We compute the low energy threshold corrections to neutrino masses and mixing in the standard
model (SM) and its minimal supersymmetric version, using the effective theory technique. We demonstrate
that they stabilize the results for neutrino masses and mixing with respect to the choice of the scale to which
the renormalization group (RG) equation is integrated. (This confirms the correctness of the recent re-
derivation of the RGE for the SM in hep-ph/0108005.) Since, as is known, those corrections are potentially
very important for phenomenology we derive for them the explicit formulae that can be applied to specific
models of neutrino masses and mixing.

1 Introduction

There is at present strong experimental evidence for neu-
trino oscillations. Their most natural explanation is the
existence of neutrino masses. Neutrino masses can be in-
corporated in the standard model (SM) or its supersym-
metric extension (MSSM) by adding to the Lagrangian
the non-renormalizable dimension-5 operator [1]

∆LSM = − 1
4M

CAB
(
εkiHkl

A
i

) (
εljHll

B
j

)
+H.c., (1.1)

in which A,B = 1, 2, 3 label generations, lAj = (νA, eA)
are the Weyl spinors transforming as doublets of SU(2)L,
Hi is the Higgs doublet with hypercharge +1/2 and ε21 =
−ε12 = 1, εii = 0. After electroweak symmetry breaking
(1.1) gives the neutrino mass matrix in the form

(
mtree
ν

)AB = 1
4M

CABv2, (1.2)

where v is the vacuum expectation value of the neutral
component of the Higgs field Hi; this is diagonalized by
the unitary rotation νA → UAaνa. The elements of the
matrix U determine the neutrino oscillation probabilities
and are, therefore, probed in the neutrino experiments.
The operator (1.1) appears in the low energy effective

theory as a result of integrating out fields of an underly-
ing theory describing physics at some high energy scale.
Thus, it is assumed to be generated at some high scale
MF (much higher than the electroweak scaleMZ). There-
fore obtaining reliable predictions for neutrino masses and
mixing angles requires solving the renormalization group
equation (RGE) for the Wilson coefficient CAB [2,3]

d
dt

CAB = KCAB + κ
[
y2eA

CAB +CABy2eB

]
, (1.3)

where t = (1/16π2) ln(Q/MZ) and y2eA
are the Yukawa

couplings of the charged leptons1. In the SM κ = −3/2
and K = −3g22 + 2

∑
fermionsN

(f)
c y2f + 2λ where N

(f)
c = 3

for quarks and 1 for leptons; in the MSSM κ = +1 and
K = −6g22 − 2g2Y + 6

∑
A y2uA

with g2Y = (3/5)g
2
1 .

The solution to (1.3) [4],

C(Q) = IKJ C(MF )J , (1.4)

where J = diag(Ie, Iµ, Iτ ) and

IK = exp
(

−
∫ tQ

0
K(t′)dt′

)
,

IeA
= exp

(
−κ

∫ tQ

0
y2eA
(t′)dt′

)
≈ 1− IrgA , (1.5)

with tQ = (1/16π2) ln(MF /Q), gives C(Q) at the elec-
troweak scale Q ≈ MZ in terms of C(MF ). The RGE
(1.3) was analyzed in many papers [5] to see how much the
initial pattern of neutrino masses and mixing angles gen-
erated at the scaleMF is modified by quantum corrections
involving large logarithms ln(MF /MZ) � 1. In particular,
it has been found [6] that (1.3) exhibits a non-trivial fixed
point structure. In many interesting cases (e.g. for de-
generate or partially degenerate neutrino mass spectrum)
that structure leads to a pattern of mixing angles that is
not compatible with the present experimental indications

1 Without loss of generality throughout this paper we work
in the basis in which the matrix of the charged lepton Yukawa
couplings is diagonal (this basis is preserved by the RG evo-
lution of the charged lepton Yukawa couplings below the scale
MF ); the Wilson coefficient CAB is therefore assumed to be
given in that basis too. The normalization of λ is fixed by the
Higgs self-interaction: Lself = −(λ/2)(H†H)2
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(i.e. bimaximal mixing and small U13 matrix element). It
has however been pointed out [8–10] that in the MSSM
the so-called low energy threshold corrections which were
neglected in previous analyses [5,6] can in some cases be
more important than the RG evolution and can change
qualitatively the pattern obtained by solving (1.3).
In this paper we compute these low energy threshold

corrections both in the SM and in the MSSM. We first
show that they stabilize the results for neutrino masses
and mixing with respect to the choice of the low energy
scale Q to which the RGE is integrated out (to clarify
the points raised in the recently published paper [11] we
demonstrate this explicitly in a pedagogical way) and as-
sess their magnitude and dependence on the parameters
of the MSSM.

2 Standard model

In this section we calculate one-loop corrections to the
neutrino mass matrix in the SM. Our starting point is
the SM Lagrangian (see e.g. [12]) supplemented with the
non-renormalizable term (1.1). All parameters of this La-
grangian are understood to be running parameters renor-
malized at the scale Q ∼ MZ . Also the Wilson coefficient
CAB of the dimension-5 ∆L = 2 operator (1.1) is a renor-
malized parameter of the effective theory Lagrangian. In-
tegrating its RGE (1.3) from the high scale MF down to
some scale Q ≈ MZ resums potentially large corrections
involving ln(MF /Q) to all orders of the perturbation ex-
pansion. However, since the low energy scale Q is not a
priori determined by any physical requirement (apart from
the condition Q ∼ MZ), the neutrino masses and mixing
angles computed in the tree-level approximation from the
Wilson coefficient CAB(Q) do depend (albeit weakly) on
the actual choice of Q. This dependence can be removed
by computing masses and mixing angles in the one-loop
approximation in the MS scheme with the same renormal-
ization scale Q.
Since the neutrino masses are orders of magnitude

smaller than the electroweak scale, the calculation of the
low energy threshold corrections is technically most eas-
ily achieved in the effective theory approach. At the scale
Q ≈ MZ all gauge and Higgs bosons are integrated out
and the effective theory valid below the electroweak scale
is constructed. In this low energy theory the one-loop neu-
trino mass matrix

(
m1−loop
ν

)AB is given by the tree-level
term (1.2) of the SM plus the one-loop (threshold) correc-
tion ∆mν . The latter, apart from having a leading lnQ
dependence that exactly matches the lnQ dependence of
the tree-level mass (mtree

ν )AB(Q) (1.2), can also contain
non- trivial Q-independent pieces.
Writing the SM Higgs doublet as

H =
1√
2

( √
2G+

v + φ0 + iG0

)
, (2.1)

we get from (1.1) the neutrino mass term and various in-
teractions (we write down only those which will be rele-
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Fig. 1. One-particle irreducible threshold corrections

vant for us):

∆LSM = −1
2
(mtree

ν )ABνAνB

+
vCAB

2
√
2M

G+eBνA − vCAB

4M
φ0νBνA

−CAB

8M
(φ0φ0 − G0G0)νBνA +H.c. (2.2)

In principle, to get the Feynman rules for the neutrino
mass eigenstates νa one has also to rotate the neutrino
fields νA → UAaνa (where UAa is the matrix diagonaliz-
ing (mtree

ν )AB). This step is however unnecessary for our
purpose since we will everywhere use massless neutrino
propagators on internal lines2. We can therefore compute
directly the corrections to the tree-level mass matrix CAB

in the basis in which it is not necessarily diagonal.
The strategy is now to integrate out heavy fields: W±,

Z0, φ0 (as well as Goldstone bosons G± and G0) and to
construct the effective Lagrangian valid below the scale
Q ∼ MZ . Up to terms of order O(p2/M2

Z) where p ∼
mν 
 MZ is the external four momentum, one-loop ef-
fects (shown schematically in Fig. 1) of the heavy fields
present in the full SM have to be simulated by the correc-
tions δzAB and δmAB

ν in the effective theory Lagrangian

Leff = ν̄A
(
δAB + δzAB

)
iσ̄µ∂µνB

− 1
2

[(
mtree
ν + δmν

)AB
νAνB +H.c.

]
+ . . . (2.3)

Redefining the neutrino fields to get their kinetic term
canonical and using δzAB = −ΣAB

V (0), δmAB
ν = ΣAB

m (0)
(where ΣAB

V (p2) and ΣAB
m (p2) are defined in Fig. 1) one

gets

(∆mν)
AB = IthA′A

(
mtree
ν

)A′B +
(
mtree
ν

)AB′
IthB′B ,

IthAB ≡ 1
2
ΣAB
V (0) +

1
2
∆AB , (2.4)

where we have split

ΣAB
m (0) =

1
2
∆A′A (mtree

ν

)A′B +
1
2
(
mtree
ν

)AB′
∆B′B . (2.5)

2 Taking non-zero neutrino masses into account in propaga-
tors would amount to including 1/M2 effects (where M is the
mass scale of the heavy neutrino states). Since we do not con-
sider operators of dimension higher than five resulting from
the seesaw mechanism we cannot compute 1/M2 effects con-
sistently
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Fig. 2a–c. Contributions of the charged Goldstone boson.
Heavy dots indicate vertices arising from the operator (1.1).
Crosses indicate fermion propagators with a helicity flip (i.e.
with the fermion mass in the numerator)

The G± Goldstone bosons’ contribution to ΣAB
V and

ΣAB
m are shown in Figs. 2a,b,c, respectively, where the dots

denote the interaction vertex originating from∆LSM given
in (2.2). In a general Rξ-gauge and working in the MS
scheme one finds

ΣAB
V (0) =

1
2
δABy2eA

× [
(m2

eA
− ξWM2

W )B
′
0(eA, G

±) +B0(eA, G±)
]
,

ΣAB
m (0) = − v2

4M
(2.6)

×
[
y2eA

CABB0(eA, G±) +CABy2eB
B0(eB , G±)

]
.

We have used the abbreviated notation for the standard
two-point function

B0(1, 2) ≡ B0(0,m1,m2)

=
1

(4π)2

[
−1 + m2

1

m2
1 − m2

2
ln

m2
1

Q2 +
m2
2

m2
2 − m2

1
ln

m2
2

Q2

]
,

B′
0(1, 2) ≡ d

dp2
B0(p2,m1,m2)

∣∣∣∣
p2=0

=
1

(4π)2

[
−1
2

m2
1 +m2

2

(m2
1 − m2

2)2
+

m2
1m

2
2

(m2
1 − m2

2)3
ln

m2
1

m2
2

]
,

where m1 and m2 are the masses of particles 1 and 2.
The W± boson exchange contributes only to ΣV :

ΣAB
V =

g22
2
δAB

[
(m2

eA
− M2

W )B
′
0(eA,W

±)

+B0(eA,W±) + 1
]
+

g22
4
δAB

×
{
m2
eA

M2
W

[
(m2

eA
− M2

W )B
′
0(eA,W

±)

−B0(eA,W±)
]

− 2B0(eA,W±)

−m2
eA

M2
W

[
(m2

eA
− ξWM2

W )B
′
0(eA, G

±)

−B0(eA, G±)
]
+ 2ξWB0(eA, G±)

}
. (2.7)

Together, the G± and W± contributions give

IW
±G±

AB = δAB
g22
2
m2
eB

M2
W

1
4

[
(m2

eB
− M2

W )B
′
0(eB ,W

±)

�A �B�

Z0

a)

�A �B� �

Z0

b)
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Fig. 3a–c. Contributions of Z0 and neutral scalars
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Fig. 4. Tadpole diagrams

−3B0(eB ,W±)
]
+ δAB

g22
4

[
(m2

eB
− M2

W )

×B′
0(eB ,W

±) +B0(eB ,W±) + 1
]

−δAB
g22
4

[(
1− m2

eB

M2
W

)
B0(eB ,W±)

×
(
ξW − m2

eB

M2
W

)
B0(eB , G±)

]
. (2.8)

In the limit of massless neutrinos on internal lines, the
contribution of Z0 exchange to ΣV arising from the di-
agram shown in Fig. 3a can by obtained from (2.8) by
setting there meB

= 0 and replacing W±(G±) → Z0(G0),
g22 → (g22 + g2Y )/2. This gives

I
Z0(1)
AB = δAB

g22 + g2Y
8

× [
1− M2

ZB
′
0(ν, Z

0) + ξZB0(ν,G0)
]
. (2.9)

(We do not write any index on ν to stress that neutrino
masses are set to zero in the B0 functions.) The diagram
shown in Fig. 3b, which arises due to the non-zero Majo-
rana mass insertion, contributes to ΣAB

m (0). It gives

I
Z0(2)
AB = δAB

g22 + g2Y
2

×
[
B0(ν, Z0) +

1
4M2

Z

a(G0)− 1
4M2

Z

a(Z0)
]
. (2.10)

Finally the exchange of G0 and φ0 in the diagram shown
in Fig. 3c gives

IABG0,φ0 = δAB
1
2v2

[
a(φ0)− a(G0)

]
, (2.11)

where 16π2a = m2[−1 + ln(m2/Q2)] is another standard
loop function. The ξZ dependent part of this contribution
cancels the ξZ dependence of (2.10).

The combined contribution of (2.8)–(2.11) is still gauge
dependent because one has to include the contribution of
tadpole diagrams shown in Fig. 4. They give

IT
AB = −δAB

Tφ
M2

φv
= −δAB

Tφ
λv3

,
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=
δAB

16π2

{
g2

4
ξW

(
1− ln ξWM2

W

Q2

)

+
g2 + g2Y
8

ξZ

(
1− ln ξZM

2
W

Q2

)

− 3
2
λ

(
−1 + lnM2

φ

Q2

)

+
1
λ

∑
f,A

N (f)
c y4fA

(
−1 + ln m2

fA

Q2

)

− 1
λ

[
3
8
g42

(
−1
3
+ ln

M2
W

Q2

)

+
3
16
(g22 + g2Y )

2
(

−1
3
+ ln

M2
Z

Q2

)]}
. (2.12)

It is easy to see that the ξW and ξZ dependence of (2.8)
and (2.9) is canceled by (2.12).
To check that

(
m1−loop
ν

)AB is independent of the renor-
malization scale Q we must recall the RGE for the vacuum
expectation value v2. Since in this approach v2 is merely
an abbreviation for −2m2/λ wherem2 and λ are the (neg-
ative) mass squared parameter and the self-coupling of the
Higgs doublet, respectively, we have

d
dt

v2 = v2
(
1
m2

d
dt

m2 − 1
λ

d
dt

λ

)
, (2.13)

where 16π2t = lnQ. The RG equations for m2 and λ read

d
dt

m2 = m2
(

−9
2
g22 − 3

2
g2Y + 6λ+ 2T

)
,

d
dt

λ = 12λ2 − (9g22 + g2Y )λ+
9
4
g42 +

3
2
g22g

2
Y +

3
4
g4Y

+4λT − 4T2,

where T ≡ ∑
f N

(f)
c y2f and T2 ≡ ∑

f N
(f)
c y4f . Combining

(2.13) with the RGE (1.3) for CAB we have therefore

1
4M

CAB(Q)v2(Q) =
1
4M

CAB(Q′)v2(Q′)

−3
2

v2

4M

(
CABy2eB

+ y2eA
CAB

)
ln

Q

Q′

− v2

4M
CAB4λ ln

Q

Q′ +
v2

4M
CAB 3

2
(g22 + g2Y ) ln

Q

Q′

− 1
λ

(
9
4
g42 +

3
2
g22g

2
Y +

3
4
g4Y − 4T2

)
ln

Q

Q′ + . . . (2.14)

It is now easy to see that the leading lnQ dependence
of the tree-level neutrino mass matrix (mtree

ν )AB (Q) can-
cels the explicit lnQ dependence of the one-loop correc-
tion (2.4). In particular, the 1/λ terms in (2.14) cancel
the lnQ dependence of the W±, Z0 (and their ghosts)
and fermionic tadpoles in (2.12).
It is also possible to consider v not as the tree-level

VEV of the Higgs field but instead as the minimum of
the full one-loop effective potential. In such an approach

there are no tadpoles3 but since the effective potential
gives finite v only in the Landau gauge, ξW = ξZ = 0, the
contributions (2.8)–(2.11) must be taken in this gauge too.
In this approach the RGE for v21−loop is no longer given
by (2.13) but instead is determined from the anomalous
dimension (also taken in the Landau gauge) of the Higgs
field operator:

d
dt

v21−loop = v21−loop

(
9
4
g22 +

3
2
g2Y − 2T

)
. (2.15)

It is then easy to check that again the explicit lnQ depen-
dence of

(
m1−loop
ν

)AB obtained from (2.8)–(2.11) in the
Landau gauge cancels against the lnQ dependence of the
tree-level mass matrix (1/4M)CAB(Q)v21−loop(Q).

In practice, the difference between the two approaches
(which formally is a higher order effect) is not seen when
v2 (or v21−loop) is expressed in terms of the physical Z

0

boson mass. For example, in the first approach one has

v2 =
4(M2

Z)ph
g22 + g2Y

[
1− Π̂ZZ(M2

Z , Q)
(M2

Z)ph
+
2Tφ
λv3

]
. (2.16)

where Π̂ZZ(M2
Z , Q) is the 1-PI self energy of the Z0 bo-

son computed for q2 = M2
Z and renormalized in the MS

scheme with the renormalization scale Q.
Neglecting terms of order O(m4

eA
/M4

W ) and higher the
final formula reads (tadpoles have canceled out)

IAB =
δAB

16π2

{
y2eB

(
11
8

− 3
4
ln

M2
W

Q2

)

+
g2

4

(
1
2
+ ln

M2
W

Q2

)
+

g2 + g2Y
8

(
−5
2
+ 4 ln

M2
Z

Q2

)

+
λ

2

(
−1 + lnM2

φ

Q2

)
− 8π2 Π̂ZZ(M2

Z , Q)
(M2

Z)ph

}
, (2.17)

where we have adopted ξW,Z = 1 and v2 in the tree-level
neutrino mass matrix is now given by

v2 ≡ ŝ2W ĉ2W
πα̂EM

(M2
Z)ph,

where ŝ2 and α̂EM are the sinus of the Weinberg angle and
fine structure constant, respectively, in the MS scheme and
at the renormalization scale Q (for which one can take
MZ)4. Note also that the factor −(3/2) ln(MW /Q) in the
first line of (2.17) confirms the correctness of the recent
re-derivation [3] of the SM RGE.

3 Using v determined from the full one-loop potential is
equivalent to saying that one expands the symmetric La-
grangian around some initially unspecified v and determines
the value of v from the requirement that the tree-level tadpole
(arising from a term in the Lagrangian that is linear in the
Higgs field) cancels the one-loop one

4 In the standard way (see e.g. [12]) ŝ2(MZ) and α̂EM(MZ)
can be expressed in terms of measurable quantities: αEM mea-
sured in the Thomson scattering and by the Fermi constant
GF



P.H. Chankowski, P. Wasowicz: Low energy threshold corrections to neutrino masses and mixing angles 253

From our discussion it should be clear that putting a
particular emphasis on better stability with the renormal-
ization scale Q of the product v2CAB (or of its eigen-
values) as in ref. [11] makes no sense in the quantum
field theory. The physical neutrino masses defined as the
poles of the propagators [15] (or, in the one-loop approx-
imation, as the appropriate coefficients of the effective
Lagrangian (2.3)) do not depend on the renormalization
scale Q. On the other hand, by themselves big changes
of CAB during the RG evolution between MF and MZ

do not signal any instability. They reflect only the im-
portance of the resummation of large logarithmic contri-
butions

(
y2τ ln(MF /MZ)

)n where n = 1, 2, . . . in order to
get reliable results for neutrino masses in terms of the
Lagrangian parameters defined at the scale MF . Finally,
let us notice that v2(Q) disappears from the final for-
mula (2.17) for neutrino masses. Therefore, the question
whether v2 is considered as an abbreviation for −m2/λ
(in which case its variation with Q is very rapid) or as the
minimum of the full one-loop effective potential is inessen-
tial for the stabilization of the results for physical neutrino
masses.

3 The MSSM

In this section we calculate one-loop corrections to neu-
trino mass matrix in the MSSM. We will see that, apart
from stabilizing the results obtained from the RG analy-
sis with respect to small changes of the final scale Q, they
contain also lnQ-independent terms which can be more
important than the RG evolution. In some situations [8,
10,9] they can change the pattern of mixing and lead to
relations between the mixing angles different from the one
obtained at the infrared fixed point of the RGE (1.3) [6].
We will use the notation and conventions of [14] in which
the Feynman rules resulting from the renormalizable part
of the MSSM (i.e. without the higher dimension operators)
are collected.
The neutrino masses arise in supersymmetric models

from one of the dimension-5 operators obtained by adding
to the Lagrangian supersymmetric non-renormalizable
terms

∆L ∝ 1
M

CAB

∫
d2θ

(
εijĤ

(u)
i L̂A

j

)(
εlkĤ

(u)
l L̂B

k

)
+H.c.

= − 1
4M

CAB
[(

εijH
(u)
i lAj

)(
εijH

(u)
i lBj

)
+
(
εijh

(u)
i LA

j

)(
εijh

(u)
i LB

j

)
+ 2

(
εijH

(u)
i LA

j

)
×
(
εijh

(u)
i lBj

)
+ 2

(
εijh

(u)
i LA

j

)(
εijH

(u)
i lBj

)]
+H.c.

+terms with auxiliary fields, (3.1)

where capital letters with a hat denote superfields and
capital letters and lower case letters denote their scalar
and fermionic components, respectively. In the second line
we have fixed the normalization so that the first term co-
incides with the operator (1.1) in the SM.

Expressing the initial fields in terms of the physical
ones as in [14] one gets the following terms (we write down
only those which are relevant for our calculation):

∆LMSSM = −1
2
(mtree

ν )ABνAνB ,

+
vuC

AB

2
√
2M

Z2k
H H+

k eBνA − vuC
AB

4M
Z2k
R H0

kνBνA

−CAB

8M
Z2i
RZ2j

R H0
i H

0
j νBνA

+
CAB

8M
Z2i
HZ2j

HH0
i+2H

0
j+2νBνA

−vuC
AB

√
2M

ZAJZ4i
N ν̃Jχ

0
i νB

+
vuC

AB

2
√
2M

ZAk∗
L Z2j

+ L−
k χ

+
j νB +H.c. (3.2)

As previously we use Weyl spinors here. From (3.2) the
necessary additional Feynman rules can be easily obtained.
The contribution to the quantity IAB defined in (2.4)

of the W± and G± bosons is the same as in the SM and
is given by (2.8)5. The contribution of H± (arising from
diagrams similar to the ones shown in Fig. 2) is

IH
±

AB = δAB
g22
8
m2
eB

M2
W

tan2 β

× [(m2
eB

− M2
H±)B′

0(eB , H
±) +B0(eB , H±)

]
+δAB

g22
2
m2
eB

M2
W

B0(eB , H±), (3.3)

where tanβ ≡ vu/vd is the usual ratio of the VEVs of the
two Higgs doublet H(u) and H(d).
The contribution of Z0 is the same as in the SM and

is given by (2.9,2.10) while the contribution of neutral
scalars (2.11) is in the MSSM replaced by

IscalarsAB = δAB
1
2v2u

[
sin2 αa(H0) + cos2 αa(h0)

− cos2 βa(A0)− sin2 βa(G0)
]
. (3.4)

Since v2u/ sin
2 β = v2u + v2d the last term of (3.4) cancels

the ξZ dependence in (2.10) as in the SM. The dependence
of (2.8) and (2.9) on ξW and ξZ , respectively is again
canceled out by the tadpole diagrams with G± and G0

loops6.
5 Strictly speaking, in supersymmetry one has to use the

DRED scheme [13] instead of DIMREG used in the previous
section. This would amount to omitting factors of 1 in the
brackets in the second line of (2.8) and in (2.9) and to similar
changes in the tadpole contributions. These changes do not
affect, however, the interesting part of the threshold corrections
which is not proportional to δAB

6 In the MSSM (2.12) is replaced by −δAB [Th0 cosα/M2
h

+TH0 sinα/M2
H ]/vu. This can be brought to a more convenient

form by using the tree-level relations: cos2 α/M2
h + sin2 α/M2

H

= (sin2 β/M2
Z + cos2 β/M2

A)/ cos
2 2β and sinα cosα(1/M2

h −
1/M2

H) = −(sinβ cosβ/ cos2 2β)(1/M2
Z + 1/M2

A)
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Fig. 5a–f. Contributions of charginos/charged sleptons a–c
and neutralinos/sneutrinos d–f

Feynman diagrams describing contributions of char-
gino/charged slepton and neutralino/sneutrino sectors are
shown in Fig. 5. They give

IchargAB =
1
4

(
g2Z

Ak∗
L Z1j∗

− + yeA
Z3+Ak∗
L Z2j∗

−
)

×
(
g2Z

Bk
L Z1j

− + yeB
Z3+Bk
L Z2j

−
)
,

×
[
(m2

Cj
− M2

Lk
)B′

0(Cj , E
±
k ) +B0(Cj , E

±
k )
]

−
√
2

vu
ZAk∗
L Z2j

+

(
g2Z

Bk
L Z1j

− + yeB
Z3+Bk
L Z2j

−
)

×mCjB0(Cj , E
±
k ), (3.5)

and

IneutrAB =
g22 + g2Y
8

ZAJ
ν ZBJ∗

ν

∣∣∣sWZ1j
N − cWZ2j

N

∣∣∣2
×
[
(m2

Nj
− M2

ν̃J
)B′

0(Nj , ν̃J) +B0(Nj , ν̃J)
]

− 2
vu

√
g22 + g2Y Z

AJ
ν ZBJ∗

ν Z4j
N

(
sWZ1j

N − cWZ2j
N

)
×mNj

B0(Nj , ν̃J). (3.6)

To check that the lnQ dependence of the correction
to the neutrino mass matrix in the MSSM matches the
one following from the RGE it is more convenient to use
the second approach described in the previous section and
to assume that v2u in the tree-level neutrino mass matrix
is determined from the full one-loop effective potential.
Using then its RGE [16]

d
dt
(v2u)1−loop = (v2u)1−loop

[
3
2
g22 +

1
2
g2Y − 6

∑
A

y2uA

]

(3.7)
and the MSSM RGE for CAB (1.3) one finds[

v21−loop

4M
CAB

]
(Q) =

[
v21−loop

4M
CAB

]
(Q′)

−v21−loop

4M
CAB

(
9
2
g22 +

3
2
g2Y

)
ln

Q

Q′

+
v21−loop

4M

(
CABy2eB

+ y2eA
CAB

)
ln

Q

Q′ . (3.8)

It is then easy to see that in the gauge ξW = ξZ = 0
(in which the effective potential and hence also v1−loop is
defined) the dependence on lnQ in the sum of corrections
(2.8)–(2.10) and (3.3)–(3.6) cancels the lnQ dependence
in (3.8).
The final formula for the factor IthAB in the MSSM takes

the form

16π2IthAB = δAB
g2

2
m2
eB

M2
W

{
1
4
(1 + tan2 β)

×
(

−1
2
+ ln

M2
H±

Q2

)
+
1
2

(
1 +

3
2
ln

M2
H±

M2
W

)}

+
1
4

(
g2Z

Ak∗
L Z1j∗

− + yeA
Z3+Ak∗
L Z2j∗

−
)

×
(
g2Z

Bk
L Z1j

− + yeB
Z3+Bk
L Z2j

−
)

×
[
ln

M2
E±

k

Q2 + f(m2
Cj
,M2

E±
k

)

]

−
√
2

vu
ZAk∗
L Z2j

+

(
g2Z

Bk
L Z1j

− + yeB
Z3+Bk
L Z2j

−
)
mCj

×
[
ln

M2
E±

k

Q2 + g(m2
Cj
,M2

E±
k

)

]

+
g22 + g2Y
8

ZAJ
ν ZBJ∗

ν

∣∣∣sWZ1j
N − cWZ2j

N

∣∣∣2
×
[
ln

M2
ν̃J

Q2 + f(m2
Nj

,M2
ν̃J
)
]

− 2
vu

√
g22 + g2Y Z

AJ
ν ZBJ∗

ν Z4j
N

(
sWZ1j

N − cWZ2j
N

)
mNj

×
[
ln

M2
ν̃J

Q2 + g(m2
Nj

,M2
ν̃J
)
]

+terms proportional to δAB , (3.9)

where the functions f and g are

f(a, b) = −1
2
+

a

b − a
+

a2

(b − a)2
ln

a

b
,

g(a, b) = −1− a

b − a
ln

a

b
,

and satisfy f(a, a) = g(a, a) = 0. The terms proportional
to the unit matrix are not interesting as they change only
the overall scale of the neutrino masses and do not influ-
ence the mixing angles.
Consider now the simplest limit MH±=ML±

k
=Mν̃J

=
mCj = mNj ≡ MS . Using the solution (1.4) and writing
for Q ≈ MZ the factors IrgeA

as

IeA
= exp

(
−
∫ tQ

0
y2eA
(t′)dt′

)

≈ exp
(

−
∫ tS

0
y2eA
(t′)dt′

)[
1− y2eA

16π2
ln

MS

Q

]
, (3.10)

where tQ = (1/16π2) ln(MF /Q), tS = (1/16π2) ln(MF /
MS) and y2eA

= (g22/2)(m
2
eA
/M2

W )(1 + tan
2 β), we have

(up to the overall normalization)
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(
mtree
ν

)AB (Q)
∝ (mtree

ν

)AB (MS)− 1
16π2

ln
MS

Q

×
[
y2eA

(
mtree
ν

)AB (MS) +
(
mtree
ν

)AB (MS)y2eB

]
+O

(
y4eA

ln2
MS

Q

)
. (3.11)

Adding the one-loop correction in the form

16π2IAB = δAB
g2

2
m2
eB

M2
W

{
1
4
(1 + tan2 β)

(
−1
2
+ ln

M2
S

Q2

)

+
1
2

(
1 +

3
2
ln

M2
S

M2
W

)}
+
1
4
δABy2eB

ln
MS

Q

+terms proportional to δAB , (3.12)

we recover, as far as the logarithms are concerned, the
same result that is obtained with the running using the
MSSM RGE from the scaleMF down toMSUSY, and then
the SM RGE to run down to the MW scale [7]. There is
however a non-trivial extra non-logarithmic piece

δAB
g2

2
m2
eB

M2
W

(
3
8

− 1
8
tan2 β

)
.

which is missed by the RG procedure just described. This
piece is usually less important than the effects of the evo-
lution from the scale MF down to MSUSY but for large
tanβ it is more important than the running from MSUSY
to the MW scale with the SM RGE.

4 Numerical analysis

In the SM the most important correction which changes
the matrix structure of the neutrino mass matrix can be
incorporated by substituting

CAB(Q) → CAB
corrected

≡ CAB(Q) + IthA CAB(Q) +CAB(Q)IthB , (4.1)

where

IthA =
1

16π2
g22
2
m2
eA

M2
W

×
[
11
8

− 3
2
ln

MW

Q
+O

(
m2
eA

M2
W

ln
m2
eA

M2
W

)]
, (4.2)

in the tree-level formulae for neutrino masses and mixing
angles. Since IthA are proportional to the Yukawa couplings
y2eA
, this correction cannot change qualitatively the results

obtained by integrating the RGE and can be most easily
taken into account by stopping the RG evolution of the
Wilson coefficient CAB(Q) at the scale Q = MW e−11/12.
The remaining corrections affect only the overall scale of
the neutrino masses and therefore are not interesting in
view of the unspecified magnitude of the massM in (1.2).

In the MSSM the contribution of W± and H± to IthAB
is also proportional to δABm2

eA
/M2

W and cannot change
qualitatively the results of the RG evolution7. However
the effects of the genuinely supersymmetric contribution
IsusyAB = IchargAB + IneutrAB to IthAB can be important because
unlike the SM case, it is not necessarily proportional to
δABm2

eA
/M2

W . It has been demonstrated [8–10], that I
susy
AB ,

if large, can lead to a relation between the mixing angles
different than the one obtained at the infrared fixed point
of the RGE [6]. The numerical estimates made in [8–10]
relied however on approximating the corrections IthAB by
the pure wino contribution to ΣAB

V (0). Here we analyze
the dependence of IthAB on the MSSM parameters using the
full expression (3.9). For simplicity we will assume that
the mixing of the left- and right-handed charged sleptons
is negligible.
We begin by considering flavor conserving slepton mass

matrices. In this case IsusyAB = δABIsusyA because the ma-
trices ZAk

L and ZAJ
ν are diagonal in the generation space.

With no mixing of the left- and right-handed charged slep-
tons, the chargino and neutralino contribution can be sim-
plified to

16π2IsusyA =
1
4
g22

∣∣∣Z1j
−
∣∣∣2
[
ln

M2
E±

LA

Q2 + f(m2
Cj
,M2

E±
LA

)

]

+
g22 + g2Y
8

∣∣∣sWZ1j
N − cWZ2j

N

∣∣∣2
×
[
ln

M2
ν̃A

Q2 + f(m2
Nj

,M2
ν̃A
)
]

−
√
2

vu
g2Z

2j
+ Z1j

− mCj

[
ln

M2
E±

LA

Q2 + g(m2
Cj
,M2

E±
LA

)

]

− 2
vu

√
g22 + g2Y Z

4j
N

(
sWZ1j

N − cWZ2j
N

)

×mNj

[
ln

M2
ν̃A

Q2 + g(m2
Nj

,M2
ν̃A
)
]

+
1
4
y2eA

∣∣∣Z2j
−
∣∣∣2
[
ln

M2
E±

RA

Q2 + f(m2
Cj
,M2

E±
RA

)

]
, (4.3)

where ME±
LA
and ME±

RA
are the masses of the Ath gen-

eration left- and right-handed charged sleptons, respec-
tively. The contribution of the right-handed charged slep-
tons (IsusyA )R (last line of (4.3)) is again proportional to
the corresponding Yukawa coupling y2eA

. Hence, it too
only slightly changes the effects of the RG evolution and
can be neglected here. The remaining part (IsusyA )L of
(4.3) depends on the mass of the charged slepton (the
mass of the sneutrino is related to it by the underlying
SU(2)L symmetry:M2

ν̃A
=M2

E±
LA

+cos 2βM2
W ), tanβ and

the parameters of the chargino/neutralino sector: µ and
M2 (as is customary, in the neutralino sector we take
M1 ≈ 0.5M2). Figure 6 shows the results of the numer-
ical evaluation of (IsusyA )L ≡ IsusyL (ME±

LA
) and compares it

7 The same result can be always obtained from the running
by slightly changing the value of tan β
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Fig. 6. Correction Isusy
L (ME) as a

function of the left-handed charged
slepton mass for chargino mass 150
(solid), 250 (dashed), 500 (dotted) and
800 (dot-dashed lines) for tanβ = 2
and r ≡ M2/µ = +5 and −1. In lower
panels we show the results of retaining
only the wino (left) and wino and bino
(right) contributions

to the results of approximating Isusy(ME±
LA
) by the pure

W̃± (charged wino) or W̃±, W̃ 0 and B̃ (bino) contribu-
tion. The striking difference between the complete and ap-
proximate calculation is mainly due to the contribution of
diagrams 5b,c,e,f which give a negative contribution (third
and fourth lines in (4.3)) but are missed in the approxi-
mation. Although the absolute magnitude of the correc-
tion Isusy(ME±

LA
) does depend on tanβ and the chargino

composition, the differences Isusy(ME±
LA
) − Isusy(ME±

LB
)

(which are relevant for the changes of the neutrino mass
matrix structure) are much less dependent on tanβ. They
are however sensitive to the chargino (and neutralino)
composition as is clear from the comparison of the two
upper panels of Fig. 6.
In [9] it has been observed, that if8 |Isusye | � |Isusyµ |

and Isusyµ − (Isusyτ − Irgτ ) �= 0, the masses of three neutri-
8 The renormalization group corrections (1.4) and (1.5) can

easily be incorporated in the formula (4.1) by substituting
Ith

A → Ith
A − Irg

A . One then has
CAB

corrected ≈ CAB(MF ) +
[
Ith

A (Q) − Irg
A (MF /Q)

]
CAB(MF )

+CAB(MF )
[
Ith

B (Q) − Irg
B (MF /Q)

]

nos equal at the scale MF can be split in agreement with
the experimental information, provided the solar mixing
angle is (very close to) maximal. For this mechanism to
work |Isusye − Isusyµ | ∼ 10−3 is required. We can now im-
prove the estimates made in [9] on the basis of the wino
approximation. From Fig. 6 it is clear that forM2/µ ≈ −1
and lighter chargino mass ∼ 150GeV the mass splitting
Mµ̃L ≈ 1.2MẽL (MẽL ≈ 1.2Mµ̃L) is sufficient to obtain
Isusye − Isusyµ ∼ 10−3 (∼ −10−3). For heavier charginos
and/or M2/µ positive obtaining |Isusye − Isusyµ | ∼ 10−3 re-
quires very large mass splitting (or is even impossible to
achieve).
From the formula (4.3) we can also quantify the mag-

nitude of the off-diagonal corrections IthAB induced by the
flavor mixing in the slepton mass matrices. Assuming that
left-handed charged slepton masses are all approximately
equal (which implies that sneutrino masses are also all
approximately equal), this is most easily done in the so-
called mass insertion approximation [17]. In (4.3) terms
involving e.g. charged left-handed sleptons can be written
as

ZAk
L ZBk∗

L H(M2
E±

k

)
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Fig. 7. Coefficient of the mass in-
sertion δAB

LL as a function of the
left-handed charged slepton mass
for chargino mass 150 (solid), 250
(dashed), 500 (dotted) and 800 (dot-
dashed lines) for tanβ = 2 and
r ≡ M2/µ = −1 and +5

= ZAk
L ZBk∗

L H(M2
av + (M

2
E±

k

− M2
E±

av
))

≈ δAB
[
H(M2

E±
av
)− M2

E±
av
H ′(M2

E±
av
)
]

+ZAk
L M2

E±
k

ZBk∗
L H ′(M2

E±
av
) (4.4)

≈ (M2
LL
)
AB

H ′(M2
E±

av
) + terms proportional to δAB ,

whereMav is the common mass of the left-handed charged
sleptons and H is some function. We have also used the
defining property of the matrices ZL. The mass insertions
δALLB are then defined as

δABLL =
M2

LL

M2
av

for A �= B. (4.5)

In the case of flavor mixing only in the left-handed slepton
sector9 we get for IsusyAB

IsusyAB =
δABLL
16π2

{
1
4
g22

∣∣∣Z1j
−
∣∣∣2 F (m2

Cj
,M2

E±
av
)

+
g22 + g2Y
8

∣∣∣sWZ1j
N − cWZ2j

N

∣∣∣2 F (m2
Nj

,M2
ν̃av)

−
√
2

vu
g2Z

2j
+ Z1j

− mCj
G(m2

Cj
,M2

E±
av
)

− 2
vu

√
g22 + g2Y Z

4j
N

(
sWZ1j

N − cWZ2j
N

)

×mNjG(m
2
Nj

,M2
ν̃av)

}
, (4.6)

where

F (a, b) =
b2 − 3ab
(b − a)2

− 2a2b
(b − a)3

ln
a

b
,

G(a, b) =
b

b − a
+

ab

(b − a)2
ln

a

b
. (4.7)

9 Flavor mixing in the right-handed slepton sector gives Isusy
AB

suppressed by yeAyeB . Flavor non-diagonal entries in the soft
supersymmetry breaking terms mixing charged left- and right-
handed sleptons give Isusy

AB proportional to g2yeB and, hence,
substantial only for large tanβ values, i.e. only when the renor-
malization group corrections are dominant

We have used the fact that because of the underlying
SU(2)L symmetry, mass insertions in the left-handed
charged slepton sector and in the sneutrino sector are the
same (and M2

E±
av
and M2

ν̃av
are related). In Fig. 7 we plot

the coefficient of δABLL as a function of M2
E±

av
for several

values of the chargino masses for tanβ = 2. We see that
for a fixed δABLL , the biggest values of I

susy
AB are obtained

for M2/µ ≈ −1 and for rather large slepton to chargino
mass ratio. In principle the mass insertion approximation
should fail for |δABXY | � 0.1. In practice it works as an or-
der of magnitude estimate even for |δABXY | � 1 (the error is
then of order 25%). More accurate results can be always
obtained from the general formula (3.9).

5 Conclusions

We have computed the low energy threshold corrections
to the neutrino masses and mixings in the SM and in the
MSSM. We have explicitly demonstrated that they are
gauge independent and stabilize the results with respect
to the variation of the scale Q to which the relevant RGE
is integrated from the high energy scale of the see-saw
mechanism, thus clarifying the points raised in [11].
The general formulae for the corrections IthAB derived in

this paper can be applied to various models predicting the
neutrino masses and mixing. They can be used to quantify
the slepton mass splitting and/or the amount of flavor vio-
lation in the slepton sector necessary to realize the specific
mechanisms, investigated in papers [8–10], allowing to ob-
tain correct mass squared differences and mixing angles
from initially equal neutrino masses. They can find par-
ticularly interesting application in concrete models [18] re-
lating the see-saw mechanism generating neutrino masses
to flavor non-conservation in the slepton sector. Finally,
they will be indispensable for future precision tests of any
quantitative theory of the neutrino masses.
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